Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
BMC Vet Res ; 20(1): 1, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172872

ABSTRACT

BACKGROUND: Camel filariasis induced variable clinical syndromes characterized by fever, lethargy, localized dermal lesions, loss of condition, and testicular and scrotal swelling. The objective of the present work focused on clarifying the diagnostic importance of clinical findings, serum testosterone, and semen analysis as well as blood smear and testicular histopathology as a differential tool between only balanoposthitis without filariasis male camels group (OnlyBpgr) and balanoposthitis-filariasis infected male camels group (BpFlgr). The study also monitored the associations between the severity of ticks' infestations in investigated male camels and the occurrence of balanoposthitis only or balanoposthitis with filariasis. RESULTS AND CONCLUSIONS: The study reported significant correlation between serum testosterone, serum cortisol, and sperm vitality and abnormalities percentages. The study included male camels (n = 250) classified into three groups: healthy control group (Contgr; n = 30), OnlyBpgr (n = 210), and BpFlgr (n = 10). These male camels were clinically and laboratory examined, and skin scraping tests and testicular histopathology were conducted. The study confirmed the association of the changes in clinical findings, whole blood picture, serum testosterone, serum cortisol, and semen analysis, with OnlyBpgr and BpFlgr. These changes were more prominent in BpFlgr than in OnlyBpgr. Skin scraping test results revealed a higher severity of live ticks' infestation in BpFlgr than in OnlyBpgr because, unlike OnlyBpgr, all camels in BpFlgr (n = 10) were suffering from live ticks' infestation. It also concluded the higher efficacy of histopathology of testicular tissues in male camels as a diagnostic tool for adult filaria in balanoposthitis-affected male camels than blood smear because all cases of camel filariasis in the current work were negative for microfilaria on microscopic examination of diurnal blood smear as well as testicular histopathology revealed detection of adult filaria in all camel filariasis associated with balanoposthitis. Strong correlation relationships were demonstrated between serum testosterone, serum cortisol, and semen analysis results. Positive correlations were reported between serum testosterone levels and sperm vitality percentages. However, negative correlations were stated between serum testosterone and each of serum cortisol and sperm abnormalities either in Contgr, OnlyBpgr, or BpFlgr.


Subject(s)
Dipetalonema , Filariasis , Nematode Infections , Male , Animals , Camelus , Semen , Hydrocortisone , Semen Analysis/veterinary , Filariasis/veterinary , Nematode Infections/veterinary , Testosterone
2.
J Biomol Struct Dyn ; : 1-11, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37584104

ABSTRACT

Extracellular signal-regulated kinase 2 (ERK-2) is a serine/threonine protein kinase in eukaryotic cells and belongs to the mitogen-activated protein kinase (MAPK) family. An activated form of ERK-2 phosphorylates substrates in the nucleus or cytoplasm and causes specific proteins to be expressed or activated, regulating cell proliferation, differentiation and other functions. Caffeic acid (3,4 - dihydroxy cinnamic acid), as previously reported, directly interacts with ERK-2 and reduces its effects in vitro. It is also reported to have a variety of pharmacological effects, including anti-inflammatory, immunomodulatory, antioxidant and anticancer activities. In the current study, a deep-learning protocol was employed to develop effective 100 compounds by modifying the chemical structure of DHC to improve its inhibitory performance against ERK-2. Calculations of physicochemical properties for those compounds revealed that 20 compounds had drug scores better than DHC (≥ 80%). Following that, molecular docking calculations were performed on the selected compounds and DHC. The obtained data revealed that five compounds had docking scores better than DHC (≥ -5.9 kcal/mol). Moreover, data from molecular mechanics and the Poisson - Boltzmann surface area (MM/PBSA) binding energy over 200 ns MD simulation confirmed that Cmd-1 and Cmd-4 exhibited higher stability with ΔGbinding of -40.8 and -49.1 kcal/mol, respectively, which is better than DHC (-35.1 kcal/mol). Finally, various energetic and structural studies showed the high stability of the two generated compounds within the active site of ERK-2. This study highlights the potential use of Cmd-1 and Cmd-4 as promising anti-ERK-2 drug candidates.Communicated by Ramaswamy H. Sarma.

3.
Molecules ; 28(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37570684

ABSTRACT

BRD4 (bromodomain-containing protein 4) is an epigenetic reader that realizes histone proteins and promotes the transcription of genes linked to cancer progression and non-cancer diseases such as acute heart failure and severe inflammation. The highly conserved N-terminal bromodomain (BD1) recognizes acylated lysine residues to organize the expression of genes. As such, BD1 is essential for disrupting BRD4 interactions and is a promising target for cancer treatment. To identify new BD1 inhibitors, a SuperDRUG2 database that contains more than 4600 pharmaceutical compounds was screened using in silico techniques. The efficiency of the AutoDock Vina1.1.2 software to anticipate inhibitor-BRD4-BD1 binding poses was first evaluated based on the co-crystallized R6S ligand in complex with BRD4-BD1. From database screening, the most promising BRD4-BD1 inhibitors were subsequently submitted to molecular dynamics (MD) simulations integrated with an MM-GBSA approach. MM-GBSA computations indicated promising BD1 binding with a benzonaphthyridine derivative, pyronaridine (SD003509), with an energy prediction (ΔGbinding) of -42.7 kcal/mol in comparison with -41.5 kcal/mol for a positive control inhibitor (R6S). Pharmacokinetic properties predicted oral bioavailability for both ligands, while post-dynamic analyses of the BRD4-BD1 binding pocket demonstrated greater stability for pyronaridine. These results confirm that in silico studies can provide insight into novel protein-ligand regulators, specifically that pyronaridine is a potential cancer drug candidate.


Subject(s)
Molecular Dynamics Simulation , Nuclear Proteins , Molecular Docking Simulation , Nuclear Proteins/metabolism , Bromodomain Containing Proteins , Transcription Factors/metabolism , Ligands , Cell Cycle Proteins/metabolism
4.
J Biomol Struct Dyn ; : 1-11, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37477257

ABSTRACT

The recent outbreak of the Ebola virus (EBOV) has marked it as one of the most severe health threats globally. Among various anti-EBOV inhibitors studied, galidesivir (BCX4430) has shown remarkable efficacy. This study aims to identify novel potential anti-EBOV drugs among galidesivir analogs, focusing on the Zaire ebolavirus (Z-EBOV), which exhibits a mortality rate of 90%. We subjected 200 candidate compounds to molecular docking calculations, followed by an evaluation of the bioactivity of the top 25 compounds using the OSIRIS Property Explorer. Initial 50 ns molecular dynamics (MD) simulations were then performed. According to our findings, only six compounds exhibited positive drug scores. We further performed molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations of binding energy over 50 ns, selecting the two top-performing compounds for extended 150 ns MD simulations. CID 117698807 and CID 117712809 showed higher binding stability compared to galidesivir, with ΔGbinding values of -36.7 and -53.4 kcal/mol, respectively. Both compounds demonstrated high stability within the Z-EBOV-V24 active site over the 150 ns MD simulations. Hence, our study proposes CID 117698807 and CID 117712809 as potential anti-Z-EBOV-V24 drug candidates, warranting further investigation.Communicated by Ramaswamy H. Sarma.

5.
PLoS One ; 18(7): e0288919, 2023.
Article in English | MEDLINE | ID: mdl-37494356

ABSTRACT

An effective approach to reverse multidrug resistance (MDR) is P-glycoprotein (P-gp, ABCB1) transport inhibition. To identify such molecular regulators, the SuperNatural II database, which comprises > 326,000 compounds, was virtually screened for ABCB1 transporter inhibitors. The Lipinski rule was utilized to initially screen the SuperNatural II database, identifying 128,126 compounds. Those natural compounds were docked against the ABCB1 transporter, and those with docking scores less than zosuquidar (ZQU) inhibitor were subjected to molecular dynamics (MD) simulations. Based on MM-GBA binding energy (ΔGbinding) estimations, UMHSN00009999 and UMHSN00097206 demonstrated ΔGbinding values of -68.3 and -64.1 kcal/mol, respectively, compared to ZQU with a ΔGbinding value of -49.8 kcal/mol. For an investigation of stability, structural and energetic analyses for UMHSN00009999- and UMHSN00097206-ABCB1 complexes were performed and proved the high steadiness of these complexes throughout 100 ns MD simulations. Pharmacokinetic properties of the identified compounds were also predicted. To mimic the physiological conditions, MD simulations in POPC membrane surroundings were applied to the UMHSN00009999- and UMHSN00097206-ABCB1 complexes. These results demonstrated that UMHSN00009999 and UMHSN00097206 are promising ABCB1 inhibitors for reversing MDR in cancer and warrant additional in-vitro/in-vivo studies.


Subject(s)
Drug Resistance, Neoplasm , Molecular Dynamics Simulation , ATP Binding Cassette Transporter, Subfamily B/metabolism , Drug Resistance, Multiple , Lipids/pharmacology , Molecular Docking Simulation , Cell Line, Tumor
6.
J Immunol Res ; 2023: 5544819, 2023.
Article in English | MEDLINE | ID: mdl-37383608

ABSTRACT

Chronic helminth infections (CHIs) can induce immunological tolerance through the upregulation of regulatory T cells. In coronavirus disease 2019 (COVID-19), abnormal adaptive immune response and exaggerated immune response may cause immune-mediated tissue damage. Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) and CHIs establish complicated immune interactions due to SARS-CoV-2-induced immunological stimulation and CHIs-induced immunological tolerance. However, COVID-19 severity in patients with CHIs is mild, as immune-suppressive anti-inflammatory cytokines counterbalance the risk of cytokine storm. Since CHIs have immunomodulatory effects, therefore, this narrative review aimed to clarify how CHIs modulate the immunoinflammatory response in SARS-CoV-2 infection. CHIs, through helminth-derived molecules, may suppress SARS-CoV-2 entry and associated hyperinflammation through attenuation of the inflammatory signaling pathway. In addition, CHIs may reduce the COVID-19 severity by reducing the SARS-CoV-2 entry points in the initial phase and immunomodulation in the late phase of the disease by suppressing the release of pro-inflammatory cytokines. In conclusion, CHIs may reduce the severity of SARS-CoV-2 infection by reducing hyperinflammation and exaggerated immune response. Thus, retrospective and prospective studies are recommended in this regard.


Subject(s)
COVID-19 , Helminths , Humans , Animals , SARS-CoV-2 , Prospective Studies , Retrospective Studies , Cytokines
7.
Sci Rep ; 13(1): 7218, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37137952

ABSTRACT

In the work that is being presented here, the effect of sample thickness and laser irradiance on the reduction of the signal-to-background ratio SBG and the plasma parameters, specifically electron temperature and electron density, is being investigated using back-reflection-enhanced laser-induced breakdown spectroscopy (BRELIBS). Copper and silver discs that had been highly polished were attached to the back surface of the glass target, and the Nd-YAG laser beam that was focused on the front surface of the target was tuned to its fundamental wavelength. The thicknesses of the transparent glass samples that were analysed were 1 mm, 3 mm, and 6 mm. One is able to achieve a range of different laser irradiance levels by adjusting the working distance that exists between the target sample and the focusing lens. The end result of this is that the signal-to-background ratio in the BRELIBS spectra of thicker glass samples is significantly lower as compared to the ratio in the spectra of thinner glass samples. In addition, a significant influence of modifying the laser irradiance (by increasing the working distance on the SBG ratio) is seen at various glass thicknesses for both BRELIBS and LIBS, with BRELIBS having a better SBG. Nevertheless, the laser-induced plasma parameter known as the electron temperature has not been significantly impacted by the decrease in the glass thickness.

8.
J Mol Model ; 29(3): 70, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36808314

ABSTRACT

BACKGROUND: In November 2021, variant B.1.1.529 of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified by the World Health Organization (WHO) and designated Omicron. Omicron is characterized by a high number of mutations, thirty-two in total, making it more transmissible than the original virus. More than half of those mutations were found in the receptor-binding domain (RBD) that directly interacts with human angiotensin-converting enzyme 2 (ACE2). This study aimed to discover potent drugs against Omicron, which were previously repurposed for coronavirus disease 2019 (COVID-19). All repurposed anti-COVID-19 drugs were compiled from previous studies and tested against the RBD of SARS-CoV-2 Omicron. METHODS: As a preliminary step, a molecular docking study was performed to investigate the potency of seventy-one compounds from four classes of inhibitors. The molecular characteristics of the best-performing five compounds were predicted by estimating the drug-likeness and drug score. Molecular dynamics simulations (MD) over 100 ns were performed to inspect the relative stability of the best compound within the Omicron receptor-binding site. RESULTS: The current findings point out the crucial roles of Q493R, G496S, Q498R, N501Y, and Y505H in the RBD region of SARS-CoV-2 Omicron. Raltegravir, hesperidin, pyronaridine, and difloxacin achieved the highest drug scores compared with the other compounds in the four classes, with values of 81%, 57%, 18%, and 71%, respectively. The calculated results showed that raltegravir and hesperidin had high binding affinities and stabilities to Omicron with ΔGbinding of - 75.7304 ± 0.98324 and - 42.693536 ± 0.979056 kJ/mol, respectively. Further clinical studies should be performed for the two best compounds from this study.


Subject(s)
COVID-19 , Hesperidin , Humans , Drug Repositioning , Molecular Docking Simulation , Raltegravir Potassium , SARS-CoV-2 , Molecular Dynamics Simulation , Protein Binding
9.
Ann Plast Surg ; 89(6): e31-e38, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36416699

ABSTRACT

BACKGROUND: Meningomyelocele reconstruction is a lifesaving procedure. A freestyle propeller perforator flap is an ideal option for moderate to large soft tissue meningomyelocele reconstruction. Previous studies that focused on the reliability of perforator flaps for meningomyelocele reconstruction recommended preserving a cuff of soft tissue around the perforators to avoid vasospasm. This method is a very conservative approach in comparison to the recently well-established principles of pedicled perforator flap dissection. In this study, we used a dissection ladder approach. In this method, the pedicle is freed by just islanding the pedicle, skeletonization of the perforator, or further dissection of the perforators beyond the muscles, based on intraoperatively monitoring of the flap. MATERIALS AND METHODS: Thirty-six infants with a mean age of 2.1 ± 1.1 months underwent surgery for dorsolumbar meningomyelocele at Assuit University Hospital for 3 years. During surgery, the freestyle perforator flap followed a dissection ladder for perforating vessels and intraoperative flap monitoring. Flap viability, seroma, hematoma, and cerebrospinal fluid leakage were evaluated. RESULTS: Nine cases required perforator skeletonization, 4 cases required dissection beyond the muscle, and 23 cases required islanding the flap on the perforators. The average operative time was 43.37 ± 7.87 minutes. Partial tip ischemia was detected in 2 cases. These cases exhibited partial dehiscence and healed by secondary intention. Complete flap loss did not occur in any cases. CONCLUSIONS: A conservative approach for perforator flap elevation in infants did not provide optimal results in all cases of thoracolumbar meningomyelocele reconstructions. Well-established principles of perforator dissection, including skeletonization and dissection beyond the muscle, are safe, prevent vasospasms, and improve flap viability.


Subject(s)
Meningomyelocele , Perforator Flap , Plastic Surgery Procedures , Humans , Infant , Meningomyelocele/surgery , Plastic Surgery Procedures/methods , Reproducibility of Results , Dissection
10.
Curr Issues Mol Biol ; 44(10): 5028-5047, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36286057

ABSTRACT

(1) Background: SARS-CoV-2 Omicron BA.1 is the most common variation found in most countries and is responsible for 99% of cases in the United States. To overcome this challenge, there is an urgent need to discover effective inhibitors to prevent the emerging BA.1 variant. Natural products, particularly flavonoids, have had widespread success in reducing COVID-19 prevalence. (2) Methods: In the ongoing study, fifteen compounds were annotated from Echium angustifolium and peach (Prunus persica), which were computationally analyzed using various in silico techniques. Molecular docking calculations were performed for the identified phytochemicals to investigate their efficacy. Molecular dynamics (MD) simulations over 200 ns followed by molecular mechanics Poisson-Boltzmann surface area calculations (MM/PBSA) were performed to estimate the binding energy. Bioactivity was also calculated for the best components in terms of drug likeness and drug score. (3) Results: The data obtained from the molecular docking study demonstrated that five compounds exhibited remarkable potency, with docking scores greater than -9.0 kcal/mol. Among them, compounds 1, 2 and 4 showed higher stability within the active site of Omicron BA.1, with ΔGbinding values of -49.02, -48.07, and -67.47 KJ/mol, respectively. These findings imply that the discovered phytoconstituents are promising in the search for anti-Omicron BA.1 drugs and should be investigated in future in vitro and in vivo research.

11.
J Cosmet Dermatol ; 21(11): 5636-5641, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35621236

ABSTRACT

BACKGROUND: Acral lesions of vitiligo are most likely recalcitrant to the known lines of treatment. Ablative fractional CO2 has shown efficacy in treatment of vitiligo in combination with other modalities. METHODS: Thirty non-segmental vitiligo patients with acral lesion were included in the study. Each patient was subjected to fractional Carbon Dioxide Laser Treatment followed by application of 5 fluorouracil (5FU) cream for five consecutive days. Evaluation was done 3 weeks from the start of treatment and 12 weeks after the last treatment session using VESTA score, evaluation of patients' photos by blinded investigation in addition to patients' satisfaction scores. RESULTS: Patients showed significant improvement of Vitiligo extent score for a target area (VESTA) score and developed considerable degree of repigmentation as assessed by blinded investigators. CONCLUSION: The combination of fractional ablative CO2 and 5FU is an effective and safe procedure for the treatment of acral vitiligo with promising results offering patients a new therapeutic window.


Subject(s)
Lasers, Gas , Ultraviolet Therapy , Vitiligo , Humans , Vitiligo/diagnosis , Vitiligo/therapy , Carbon Dioxide/adverse effects , Fluorouracil/adverse effects , Treatment Outcome , Lasers, Gas/adverse effects , Combined Modality Therapy , Ultraviolet Therapy/methods
12.
ACS Nano ; 16(4): 5682-5695, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35385658

ABSTRACT

The ability to apply and measure high forces (>10 pN) on the nanometer scale is critical to the development of nanomedicine, molecular robotics, and the understanding of biological processes such as chromatin condensation, membrane deformation, and viral packaging. Established force spectroscopy techniques including optical traps, magnetic tweezers, and atomic force microscopy rely on micron-sized or larger handles to apply forces, limiting their applications within constrained geometries including cellular environments and nanofluidic devices. A promising alternative to these approaches is DNA-based molecular calipers. However, this approach is currently limited to forces on the scale of a few piconewtons. To study the force application capabilities of DNA devices, we implemented DNA origami nanocalipers with tunable mechanical properties in a geometry that allows application of force to rupture a DNA duplex. We integrated static and dynamic single-molecule characterization methods and statistical mechanical modeling to quantify the device properties including force output and dynamic range. We found that the thermally driven dynamics of the device are capable of applying forces of at least 20 piconewtons with a nanometer-scale dynamic range. These characteristics could eventually be used to study other biomolecular processes such as protein unfolding or to control high-affinity interactions in nanomechanical devices or molecular robots.


Subject(s)
DNA , Nanotechnology , DNA/chemistry , Nanotechnology/methods , Microscopy, Atomic Force , Optical Tweezers , Mechanical Phenomena
13.
Nucleic Acids Res ; 50(6): 3445-3455, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35253884

ABSTRACT

Concatemers of d(TCCC) that were first detected through their association with deletions at the RACK7 locus, are widespread throughout the human genome. Circular dichroism spectra show that d(GGGA)n sequences form G-quadruplexes when n > 3, while i-motif structures form at d(TCCC)n sequences at neutral pH when n ≥ 7 in vitro. In the PC3 cell line, deletions are observed only when the d(TCCC)n variant is long enough to form significant levels of unresolved i-motif structure at neutral pH. The presence of an unresolved i-motif at a representative d(TCCC)n element at RACK7 was suggested by experiments showing that that the region containing the d(TCCC)9 element was susceptible to bisulfite attack in native DNA and that d(TCCC)9 oligo formed an i-motif structure at neutral pH. This in turn suggested that that the i-motif present at this site in native DNA must be susceptible to bisulfite mediated deamination even though it is a closed structure. Bisulfite deamination of the i-motif structure in the model oligodeoxynucleotide was confirmed using mass spectrometry analysis. We conclude that while G-quadruplex formation may contribute to spontaneous mutation at these sites, deletions actually require the potential for i-motif to form and remain unresolved at neutral pH.


Subject(s)
G-Quadruplexes , Circular Dichroism , DNA/chemistry , DNA/genetics , Genome, Human , Humans , Hydrogen-Ion Concentration
14.
Front Vet Sci ; 8: 621699, 2021.
Article in English | MEDLINE | ID: mdl-34222391

ABSTRACT

While both human and animal trypanosomiasis continue to present as major human and animal public health constraints globally, detailed analyses of trypanosome wildlife reservoir hosts remain sparse. African animal trypanosomiasis (AAT) affects both livestock and wildlife carrying a significant risk of spillover and cross-transmission of species and strains between populations. Increased human activity together with pressure on land resources is increasing wildlife-livestock-human infections. Increasing proximity between human settlements and grazing lands to wildlife reserves and game parks only serves to exacerbate zoonotic risk. Communities living and maintaining livestock on the fringes of wildlife-rich ecosystems require to have in place methods of vector control for prevention of AAT transmission and for the treatment of their livestock. Major Trypanosoma spp. include Trypanosoma brucei rhodesiense, Trypanosoma brucei gambiense, and Trypanosoma cruzi, pathogenic for humans, and Trypanosoma vivax, Trypanosoma congolense, Trypanosoma evansi, Trypanosoma brucei brucei, Trypanosoma dionisii, Trypanosoma thomasbancrofti, Trypanosma elephantis, Trypanosoma vegrandis, Trypanosoma copemani, Trypanosoma irwini, Trypanosoma copemani, Trypanosoma gilletti, Trypanosoma theileri, Trypanosoma godfreyi, Trypansoma simiae, and Trypanosoma (Megatrypanum) pestanai. Wildlife hosts for the trypansomatidae include subfamilies of Bovinae, Suidae, Pantherinae, Equidae, Alcephinae, Cercopithecinae, Crocodilinae, Pteropodidae, Peramelidae, Sigmodontidae, and Meliphagidae. Wildlife species are generally considered tolerant to trypanosome infection following centuries of coexistence of vectors and wildlife hosts. Tolerance is influenced by age, sex, species, and physiological condition and parasite challenge. Cyclic transmission through Glossina species occurs for T. congolense, T. simiae, T. vivax, T. brucei, and T. b. rhodesiense, T. b. gambiense, and within Reduviid bugs for T. cruzi. T. evansi is mechanically transmitted, and T. vixax is also commonly transmitted by biting flies including tsetse. Wildlife animal species serve as long-term reservoirs of infection, but the delicate acquired balance between trypanotolerance and trypanosome challenge can be disrupted by an increase in challenge and/or the introduction of new more virulent species into the ecosystem. There is a need to protect wildlife, animal, and human populations from the infectious consequences of encroachment to preserve and protect these populations. In this review, we explore the ecology and epidemiology of Trypanosoma spp. in wildlife.

15.
J Vis Exp ; (173)2021 07 05.
Article in English | MEDLINE | ID: mdl-34279510

ABSTRACT

The smfBox is a recently developed cost-effective, open-source instrument for single-molecule Förster Resonance Energy Transfer (smFRET), which makes measurements on freely diffusing biomolecules more accessible. This overview includes a step-by-step protocol for using this instrument to make measurements of precise FRET efficiencies in duplex DNA samples, including details of the sample preparation, instrument setup and alignment, data acquisition, and complete analysis routines. The presented approach, which includes how to determine all the correction factors required for accurate FRET-derived distance measurements, builds on a large body of recent collaborative work across the FRET Community, which aims to establish standard protocols and analysis approaches. This protocol, which is easily adaptable to a range of biomolecular systems, adds to the growing efforts in democratising smFRET for the wider scientific community.


Subject(s)
Fluorescence Resonance Energy Transfer , Nanotechnology , DNA , Diffusion
16.
J Nat Prod ; 84(5): 1617-1625, 2021 05 28.
Article in English | MEDLINE | ID: mdl-33974416

ABSTRACT

Heliomycin (also known as resistomycin) is an antibiotic with a broad spectrum of biological activities. However, low aqueous solubility and poor knowledge of its chemical properties have limited the development of this natural product. Here, we present an original scheme for the introduction of aminoalkylamine residues at positions 3, 5, and 7 of heliomycin and, using this, have prepared a series of novel water-soluble derivatives. The addition of side chains to the heliomycin scaffold significantly improves their interaction with different DNA secondary structures. One derivative, 7-deoxy-7-(2-aminoethyl)amino-10-O-methylheliomycin (8e), demonstrated affinity, stabilization potential, and good selectivity toward i-motif-forming DNA sequences over the duplex and G-quadruplex. Heliomycin derivatives therefore represent promising molecular scaffolds for further development as DNA-i-motif interacting ligands and potential chemotherapeutic agents.


Subject(s)
DNA/chemistry , Polycyclic Compounds/chemistry , Animals , Cell Line , G-Quadruplexes , Humans , Mice , Nucleic Acid Conformation , Solubility , Water
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 252: 119481, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33524821

ABSTRACT

In this work we performed dye photodegradation experiments in presence of TiO2 and Cu/Zr modified TiO2. The changes in the shape of the spectra of RB19 caused by photocatalysts under the simulated solar or UV light were monitored. Since the predominant photocatalytic mechanism can only be observed in very dilute solution of RB19, UV-Vis absorption spectrometry for higher concentrations and thermal lens spectrometry for lower concentrations have been applied to elucidate the mechanistic details of degradation processes. Bleaching of the dye was a characteristic feature, that occurred under both simulated solar and UV lights. It was also evident, that the absorption peak with maximum centered at 592 nm undergoes a slight blue shift during irradiation. The experiments carried out using UV and simulated solar light demonstrated, that two different processes responsible for the RB19 dye degradation occurred. In the initial stage of irradiation one of the processes appears under the UV light and can be recognized by a characteristic blue shift in the absorption spectrum of the solution. The second process is characteristic for irradiation by the simulated solar light which involve a blue shift at longer periods (100 min). These phenomena were attributed to the photocatalytic and photosensitization mechanisms, respectively. However, photocatalytic mechanism was also observed under simulated solar radiation, when the initial dye concentration was decreased to 5 mgL-1, and was recognized by the increase of the thermal lens signal during the initial stages of degradation process. This was possible because the thermal lens spectroscopy technique provides a limit of quantification for RB19 at the concentration level of 0.12 mg L-1, while UV-Vis spectrometry enables quantification of RB19 only down to 4 mg L-1 levels.

18.
Front Pharmacol ; 12: 774896, 2021.
Article in English | MEDLINE | ID: mdl-35237147

ABSTRACT

Limited pharmacological studies have been conducted on plant species used against poultry helminths. The objective of this study was to provide a basis for plant based anthelmintics as possible alternatives against poultry anthelmintic resistance. The study justified the need for alternative anthelmintics. The study places emphasis on the increasing anthelmintic resistance, mechanism of resistance, and preparational protocols for plant anthelmintics and their associated mechanism of action. Pharmaceutical studies on plants as alternative therapies for the control of helminth parasites have not been fully explored especially in several developing countries. Plants from a broad range of species produce a wide variety of compounds that are potential anthelmintics candidates. Important phenolic acids have been found in Brassica rapa L. and Terminalia avicenniodes Guill. and Perri that affect the cell signaling pathways and gene expression. Benzo (c) phenanthridine and isoquinoline alkaloids are neurotoxic to helminths. Steroidal saponins (polyphyllin D and dioscin) interact with helminthic mitochondrial activity, alter cell membrane permeability, vacuolation and membrane damage. Benzyl isothiocyanate glucosinolates interfere with DNA replication and protein expression, while isoflavones from Acacia oxyphylla cause helminth flaccid paralysis, inhibit energy generation, and affect calcium utilization. Condensed tannins have been shown to cause the death of nematodes and paralysis leading to expulsion from the gastro-intestinal tract. Flavonoids from Chenopodium album L and Mangifera indica L act through the action of phosphodiesterase and Ca2+-ATPase, and flavonoids and tannins have been shown to act synergistically and are complementary to praziquantel. Artemisinins from Artemisia cina O. Berg are known to disrupt mitochondrial ATP production. Terpenoids from Cucurbita moschata L disrupt neurotransmission leading to paralysis as well as disruption of egg hatching. Yeast particle encapsulated terpenes are effective for the control of albendazole-resistant helminths.

19.
Front Chem ; 8: 40, 2020.
Article in English | MEDLINE | ID: mdl-32083057

ABSTRACT

i-Motifs are four-stranded DNA structures formed from sequences rich in cytosine, held together by hemi-protonated cytosine-cytosine base pairs. These structures have been utilized extensively as pH-switches in DNA-based nanotechnology. Recently there has been an increasing interest in i-motif structures in biology, fuelled by examples of when these can form under neutral conditions. Herein we describe a cautionary tale regarding handling of i-motif samples. Using CD and UV spectroscopy we show that it is important to be consistent in annealing i-motif DNA samples as at neutral pH, i-motif unfolding kinetics is dependent on the time allowed for annealing and equilibration. We describe how the quadruplex structure formed by the human telomeric i-motif sequence can be shown to form and persist in the same conditions of neutral pH and ambient temperature in which, once at thermodynamic equilibrium, it exists predominantly as a random coil. This study has implications not only for work with i-motif DNA structures, but also in the uses and applications of these in nanotechnological devices.

20.
Cancer Genomics Proteomics ; 17(2): 101-115, 2020.
Article in English | MEDLINE | ID: mdl-32108033

ABSTRACT

BACKGROUND: Replication impediments can produce helicase-polymerase uncoupling allowing lagging strand synthesis to continue for as much as 6 kb from the site of the impediment. MATERIALS AND METHODS: We developed a cloning procedure designed to recover fragments from lagging strand near the helicase halt site. RESULTS: A total of 62% of clones from a p53-deficient tumor cell line (PC3) and 33% of the clones from a primary cell line (HPS-19I) were within 5 kb of a G-quadruplex forming sequence. Analyses of a RACK7 gene sequence, that was cloned multiple times from the PC3 line, revealed multiple deletions in region about 1 kb from the cloned region that was present in a non-B conformation. Sequences from the region formed G-quadruplex and i-motif structures under physiological conditions. CONCLUSION: Defects in components of non-B structure suppression systems (e.g. p53 helicase targeting) promote replication-linked damage selectively targeted to sequences prone to G-quadruplex and i-motif formation.


Subject(s)
DNA Helicases/genetics , DNA Polymerase III/genetics , DNA Replication/genetics , Sequence Analysis, DNA/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...